Local index formulae on noncommutative orbifolds and equivariant zeta functions for the affine metaplectic group
نویسندگان
چکیده
We consider the algebra A of bounded operators on L2(Rn) generated by quantizations isometric affine canonical transformations. The includes as subalgebras noncommutative tori all dimensions and toric orbifolds. define spectral triple (A,H,D) with H=L2(Rn,?(Rn)) Euler operator D, a first order differential index 1. show that this has simple dimension spectrum: For every B in ?(A,H,D) Shubin type pseudodifferential elements A, zeta function ?B(z)=Tr(B|D|?2z) meromorphic extension to C at most poles. Our main result then is an explicit algebraic expression for Connes-Moscovici cocycle. As corollary we obtain local formulae
منابع مشابه
Height Zeta Functions of Equivariant Compactifications of the Heisenberg Group
— We study analytic properties of height zeta functions of equivariant compactifications of the Heisenberg group.
متن کاملLefschetz formulae and zeta functions
The connection between Lefschetz formulae and zeta function is explained. As a particular example the theory of the generalized Selberg zeta function is presented. Applications are given to the theory of Anosov flows and prime geodesic theorems.
متن کاملEquivariant noncommutative index on braided sphere
To some Hecke symmetries (i.e. Yang-Baxter braidings of Hecke type) we associate ”noncommutative varieties” called braided spheres. An example of such a variety is the Podles’ nonstandard quantum sphere. On any braided sphere we introduce and compute an ”equivariant” analogue of Connes’ noncommutative index. In contrast with the Connes’ construction our version of equivariant NC index is based ...
متن کاملJohan Andersson Summation formulae and zeta functions
In this thesis we develop the summation formula ∑ ad−bc=1 c>0 f ( a b c d ) = “main terms”+ ∑ m,n 6=0 1 π ∫ ∞ −∞ σ2ir(|m|)σ2ir(|n|)F (r;m,n)dr |nm||ζ(1 + 2ir)|2
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2022
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2022.108624